If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+15X-1800=0
a = 1; b = 15; c = -1800;
Δ = b2-4ac
Δ = 152-4·1·(-1800)
Δ = 7425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7425}=\sqrt{225*33}=\sqrt{225}*\sqrt{33}=15\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15\sqrt{33}}{2*1}=\frac{-15-15\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15\sqrt{33}}{2*1}=\frac{-15+15\sqrt{33}}{2} $
| -m=-11-9/4 | | 5—3y=9 | | -1x+6=3x-14 | | -m=-11-9 | | 7g=–5+2g | | 15x+21x+36=180 | | f(20)=-40 | | 3•n=-12 | | t-37=-28 | | (t)=5t(t-3)^2(t+1) | | 40=15—9x—2 | | 45=3x+20 | | 2x²-5x=9 | | -5(-5x+5)+7(6-3x)=6+5x | | 8+9m=5 | | (4x+8)+(x2)=180 | | 10^x=95 | | x^2=24-6x | | 24x=750 | | 5t=25t^ | | 8/5=3x/97 | | 16^5x=15^x-9 | | 6x+1-4x=5x-8 | | 10x-x^2=20 | | -5x^2-6x-10=0 | | 180=6x+10°+4x-5° | | 7x-103=113-5x | | 8y−(3y−21)=46 | | (6y-113)+61=180 | | 6y-113+61=180 | | (x-1)-2=5 | | 3^(1-2x)=7^(x) |